# `unreal.Vector4`?

class `unreal.``Vector4`(x=0.0, y=0.0, z=0.0, w=0.0)?

A 4-D homogeneous vector. The full C++ class is located here: EngineSourceRuntimeCorePublicMathVector4.h:

C++ Source:

• Module: CoreUObject
• File: NoExportTypes.h

Editor Properties: (see get_editor_property/set_editor_property)

• `w` (float): [Read-Write] W
• `x` (float): [Read-Write] X
• `y` (float): [Read-Write] Y
• `z` (float): [Read-Write] Z
`ZERO` = None?

(Vector4) – 4D vector zero constant (0,0,0)

`__add__`(other)?

• `Vector4` Returns addition of Vector A and Vector B (A + B)
`__div__`(other)?

• `Vector4` Element-wise Vector divide (Result = {A.x/B.x, A.y/B.y, A.z/B.z, A.w/B.w})
`__eq__`(other)?

• `Vector4` Returns true if vector A is equal to vector B (A == B)
`__iadd__`(other)?

• `Vector4` Returns addition of Vector A and Vector B (A + B)
`__idiv__`(other)?

• `Vector4` Element-wise Vector divide (Result = {A.x/B.x, A.y/B.y, A.z/B.z, A.w/B.w})
`__imul__`(other)?

• `Vector4` Element-wise Vector multiplication (Result = {A.x*B.x, A.y*B.y, A.z*B.z, A.w*B.w})
`__isub__`(other)?

• `Vector4` Returns subtraction of Vector B from Vector A (A - B)
`__mul__`(other)?

• `Vector4` Element-wise Vector multiplication (Result = {A.x*B.x, A.y*B.y, A.z*B.z, A.w*B.w})
`__ne__`(other)?

• `Vector4` Returns true if vector A is not equal to vector B (A != B) within a specified error tolerance
`__neg__`()?

Gets a negated copy of the vector. Equivalent to -Vector for scripts.

`__or__`(other)?

`__sub__`(other)?

• `Vector4` Returns subtraction of Vector B from Vector A (A - B)
`add`(b) → Vector4?

Returns addition of Vector A and Vector B (A + B)

Parameters: b (Vector4) – Vector4
`assign`(vector) → None?

Assign the values of the supplied vector.

Parameters: vector (Vector4) – Vector to copy values from.
`cross3`(b) → Vector4?

Returns the cross product of two vectors - see http://mathworld.wolfram.com/CrossProduct.html

Parameters: b (Vector4) – Vector4
`divide`(b) → Vector4?

Element-wise Vector divide (Result = {A.x/B.x, A.y/B.y, A.z/B.z, A.w/B.w})

Parameters: b (Vector4) – Vector4
`dot`(b) → float?

Returns the dot product of two vectors - see http://mathworld.wolfram.com/DotProduct.html

Parameters: b (Vector4) – float
`dot3`(b) → float?

Returns the dot product of two vectors - see http://mathworld.wolfram.com/DotProduct.html The W element is ignored.

Parameters: b (Vector4) – float
`equals`(b) → bool?

Returns true if vector A is equal to vector B (A == B)

Parameters: b (Vector4) – bool
`is_nan`() → bool?

Determines if any component is not a number (NAN)

Returns: true if one or more components is NAN, otherwise false. bool
`is_near_equal`(b, error_tolerance=0.000100) → bool?

Returns true if vector A is equal to vector B (A == B) within a specified error tolerance

Parameters: b (Vector4) – error_tolerance (float) – bool
`is_nearly_zero3`(tolerance=0.000100) → bool?

Checks whether vector is near to zero within a specified tolerance. The W element is ignored.

Parameters: tolerance (float) – Error tolerance. true if vector is in tolerance to zero, otherwise false. bool
`is_normal3`() → bool?

Determines if vector is normalized / unit (length 1). The W element is ignored.

Returns: true if normalized, false otherwise. bool
`is_not_near_equal`(b, error_tolerance=0.000100) → bool?

Returns true if vector A is not equal to vector B (A != B) within a specified error tolerance

Parameters: b (Vector4) – error_tolerance (float) – bool
`is_unit3`(squared_lenth_tolerance=0.000100) → bool?

Determines if vector is normalized / unit (length 1) within specified squared tolerance. The W element is ignored.

Parameters: squared_lenth_tolerance (float) – true if unit, false otherwise. bool
`is_zero`() → bool?

Checks whether all components of the vector are exactly zero.

Returns: true if vector is exactly zero, otherwise false. bool
`length`() → float?

Returns the length of the vector.

Returns: float
`length3`() → float?

Returns the length of the vector. The W element is ignored.

Returns: float
`length_squared`() → float?

Returns the squared length of the vector.

Returns: float
`length_squared3`() → float?

Returns the squared length of the vector. The W element is ignored.

Returns: float
`mirror_by_vector3`(surface_normal) → Vector4?

Given a direction vector and a surface normal, returns the vector reflected across the surface normal. Produces a result like shining a laser at a mirror! The W element is ignored.

Parameters: surface_normal (Vector4) – A normal of the surface the ray should be reflected on. Reflected vector. Vector4
`multiply`(b) → Vector4?

Element-wise Vector multiplication (Result = {A.x*B.x, A.y*B.y, A.z*B.z, A.w*B.w})

Parameters: b (Vector4) – Vector4
`negated`() → Vector4?

Gets a negated copy of the vector. Equivalent to -Vector for scripts.

Returns: Vector4
`normal3`(tolerance=0.000100) → Vector4?

Gets a normalized unit copy of the vector, ensuring it is safe to do so based on the length. The W element is ignored and the returned vector has W=0. Returns zero vector if vector length is too small to safely normalize.

Parameters: tolerance (float) – Minimum squared vector length. A normalized copy if safe, (0,0,0) otherwise. Vector4
`normal_unsafe3`() → Vector4?

Calculates normalized unit version of vector without checking for zero length. The W element is ignored and the returned vector has W=0.

Returns: Normalized version of vector. Vector4
`normalize3`(tolerance=0.000000) → None?

Normalize this vector in-place if it is large enough or set it to (0,0,0,0) otherwise. The W element is ignored and the returned vector has W=0.

Parameters: tolerance (float) – Minimum squared length of vector for normalization.
`not_equal`(b) → bool?

Returns true if vector A is not equal to vector B (A != B) within a specified error tolerance

Parameters: b (Vector4) – bool
`quaternion`() → Quat?

Return the Quaternion orientation corresponding to the direction in which the vector points. Similar to the FRotator version, returns a result without roll such that it preserves the up vector. If you don’t care about preserving the up vector and just want the most direct rotation, you can use the faster ‘FQuat::FindBetweenVectors(FVector::ForwardVector, YourVector)’ or ‘FQuat::FindBetweenNormals(…)’ if you know the vector is of unit length.:

Returns: Quaternion from the Vector’s direction, without any roll. Quat
`rotator`() → Rotator?

Return the FRotator orientation corresponding to the direction in which the vector points. Sets Yaw and Pitch to the proper numbers, and sets Roll to zero because the roll can’t be determined from a vector.

Returns: FRotator from the Vector’s direction, without any roll. Rotator
`set`(x, y, z, w) → None?

Set the values of the vector directly.

Parameters: x (float) – y (float) – z (float) – w (float) –
`subtract`(b) → Vector4?

Returns subtraction of Vector B from Vector A (A - B)

Parameters: b (Vector4) – Vector4
`vector`() → Vector?

Convert a Vector4 to a Vector (dropping the W element)

Returns: Vector
`w`?

`x`?
`y`?
`z`?